SELF-SIMILAR MOVEMENT OF A VISCOUS GAS
IN A CHANNEL

M. A. Gol'dshtik UDC 532.517.2

The results presented in [1] refer primarily to dropping liquids for which the influence exerted
by the thermal conditions on the flow is related to the temperature dependence of the viscosity.
The self-similar flow of a viscous gas in a channel with a linearly increasing wall temperature
is examined in this paper. The influence exerted by the Reynolds and Prandtl numbers on heat
exchange and the hydrodynamics of the flow is analyzed.

§1. Letus consider anidealized case in which the kinematic viscosity v and the coefficient of thermal
conductivity v are treated as constant and the density p is related to the temperature T in the following de-
pendence

p = pT/T,
which is used by Boussinesq as a rough approximation of the equation p=pRT for low values of Ap/p.

Given these assumptions the problem of the stationary flow of a viscous gas in a plane channel with a
linearly increasing wall temperature, since Ty =Tx, is capable of a self-similar solution in the form

v, = vuly)r; vy, = 0; T = TH(y)x. (1.1
The equations of movement and energy for this form of solution can be written as

v, 00 /0x = —(1/p)0p/dx + v&v, /By
(1.2)
v, 0T10x = T /0y,
where x and y are Cartesian coordinates; vx and vy are the longitudinal and transverse components of the gas
velocity; p is pressure; p, and T, are certain scale values of the density and temperature; and v, is the mean
gas flow rate assumed to be expressed by

Vo = 91—0 5 ov.dy. (1.3)
The half-width of the channel h is taken as the scale of length.
By inserting relation (1.1) into Eq. (1.2), we obtain
u'’ = Re (* — ya®0); (1.4)
9"’ = Re oub, : (1.5)

where the prime indicates differentiation in terms of y; Re =vgh/v is the Reynolds number; o=1n isthe Prandtl
number; a®= (h/ p,v?) | dp/dx| is the coefficient of resistance; and x =#1. In expression (1.4) the x value x =+1
corresponds to a movement of the gas in a positive direction when it is heated, When it moves in the opposite
direction the sign of the pressure gradient is governed by two opposing factors: the friction between the flow
and the wall and the deceleration of the gas in the direction in which it is moving, so that a case correspond-
ing to a value of ¥ = ~1is possible (friction predominating).

By assuming the flow to be symmetrical about the axis of the channel (y=0) the following boundary con-
ditions can be imposed:

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 47-54,
May-June, 1976, Original article submitted May 30, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopymg
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available fram the publisher for $7.50.

336



w(0) = 0°(0) = 0; u(1) = 0; 8(1) = 1.

In addition, the following relation follows from (1.3):

u

= dy = 1.8)
s dy=1, (

PR LI

which is used to determine the unknown parameter a in (1.4).

The nonlinear boundary-value problem being posed is solved by replacing variables,

u = aw, y = 7/} a Re, (1.7

which gives Egs. (1.4) and (1.5) the forms
W’ o= ur— y6; (1.8)
0" = owb. (1.9)

1t is useful in solving this derived set of equations, to examine the auxiliary Cauchy problem
w(0) = wy; w'(0) = 0; 8(0) = 8y; 8°(0) = 0. (1.10)
In relations (1.8)-(1.10) the prime indicates differentiation in terms of the variable z,

The problem as posed contains the two free parameters w; and 9 ;, which can be determined by applying
the following considerations. Let the magnitude of 8, be fixed, Then, as shown below, the point z, is found
for certain values of w;, where w(zy) =0. If, by varying the parameter w;, the relation 6 (1) =1 can be com-
pleted, the original boundary conditions will be satisfied when y =1, from which according to (1.7) it can be
assumed that

z, =] a Re. (1.11)

The relation (1.8) in the new variables takes the form

A Ve g 1.1
Tl Tt 1.12)

The magnitudes of @ and Re are determined by using formulas (1.11) and (1.12):

B A 2
‘1:20(_\ %’—dz) s Re =z, } = dz. (1.13)
0 i 1]

The magnitude of ¢, for a given gcan be treated as the basic parameter of the problem with one or more
Re values corresponding to each of its values. The coefficient of friction cfand the Nusselt criteria Nu can
be determined from the relations

¢ = — (v'v5) 0vy/0yly=1 = — a V (a/Re) v’ (z,) = ex;
(1.14)
Nu = ab/h = [Ty — T)10T/dyly—; = [1/(1 — 0,)1d0/dy}y—1 — 2,8'(2)/(1 — 8,).
§2. Wheno =0the statement of the problem must be altered slightly, since, according to (1.9}, 6 =1 and
it is not possible to satisfy the condition 6 (1) =1 by selecting values for w,. In this case the following problem
requires solution:

w' = w — y; w0) = wy; w'(0) = 0. 2.1)
The correlations in (1.13) still remain valid since, the connection between w, and Re can be established directly.

The multiplication of (2.1) by w! followed by integration gives the following relation:

2

v = -%— (w® — ) — 2% (10 — wy) =F (w). ' 2.2)

Here the boundary condition w'(0) =0 is taken into account. From (2.2) we obtain w'=v F(w), from which it
follows that
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Consequently, the magnitude of z, governed by the condition w(zy) =0 can be written as

¥V F(w

0

-~

0
o= = | 22 (2.4)
by

In expressions (2.3) and (2.4) the sign should be selected on the basis of the condition of positiveness of Zg S0
that the sign is the opposite-of the sign of the wy. In the case of ¥ =—1the problem (2.1) has only an incre-
mental solution with a positive curvature so that only the negative values of w, can correspond to the original
boundary~value problem. A minus sign should be assigned to the value of the root in (2.3). The w(z) function
has a single root z, and throughout the 0 <z =z, range w(z) <0 so that, according to (1.13), (1.7), and (1.1),

a <0; Re <0; u=0; v(<0; and vy =0, which characterizes movement in the negative direction.

After replacing the variables w=wg the expression (2.4) can be recorded as

1 |
2=V "= [N = V2l — o) — 2 (11 . (2.5)

When |w,| <1, according to (2.5), z0~(--w0)1/2 and, when [w,| >1, zg~ (w2 and there is thus a maximum
value of z, for any wy. By using (1.13) and (2.5), it can be written

1 1
Rez_u-ag%\ﬂ.
o 4y A

From this it can be seen that when |w,| «1, Re ~w}, and when |w,|—~ =, Retendsto a certain finite number
equal, according to caleulations, to —1.814. Thus, with a positive pressure gradient an inverse movement with
high Reynolds numbers is impossible.

In the case of x =+1 the F(w) function, as determined by expression (2.2}, is best represented as

Flw) = 2/8(r — w M — w)(w — w,), (2.6)
where

wya=1/2 (: ]/'/—12 — 3wy — wo).

If w(z) is the solution to the original boundary-value problem then w(z,) =0, so that F(0) =2w,(1~1/3w?. Since
by definition F(w) =0, only those values of w, which satisfy the inequalities

0wy <13 or we<< —} 3
are admissible,

In the 0 =w,=V3 and ~2 <w,=—/3 ranges the w,; and w, roots are real and when w,<~2they are com-
plex. The function (2.6) is a cubic parabola with F—~+ when w—~=+, If w,< —2,then F(w) has a single real
root w, and w(z) increases smoothly up to infinity. This follows from (2.1) and (2.2). When wy — =, Re —
—1.814 as for x = =1, Whenw,= —2, w(z) increases smoothly and tends asymptotically to a value of w;=w, =1,
If =2 <w,=-3, then w(z) increases while the F(z) function does not reach the subsequent zero 0 =w; <1, where
w exhibits a maximum, Further, as z rises w(z) falls, which corresponds to movement backward along the
phase trajectory in the (F, w) plane. In this case the w function is periodic, oscillating between values of w,
andwy with a period

w

. 3 dw
G -l/—.),— j Ve — wy) (0 — wi) (w — wy) ’ (2'7)

we

When W0=—‘/§, wy =0, so that w(z) reaches a maximum when w=0 and oscillates between values of —v3 and 0
with a period ¢ = (3/4)1/4(2v2m)~! T%(1/4)~2.45 corresponding to a Reynoldsnumbers of Re =—3/2m = —4.71,
In the —x/§-<w0 <0 range the w(z) function is periodic and negative so that the original boundary-~value problem
has, as already noted, no solution, i.e., the backward movement of the gas is not possible when the Re num-~
bers are fairly high in terms of the modulus,

When 0 <w, <1, the w(z) function is also periodic with a period of (2.7) and it can be found by shifting the
solutions corresponding to values of —2 <w05—f3—onto half the period, The minima of the w(z) function then
lie in the (~2; —V3) range; in other words, there is a finite value of z, for each w in the range under consid-
eration,
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For the periodic solutions the magnitude z, can taken to be the first root of the w(z) function. Self-
similar periodic solutions governed by the input sign-variable velocity distribution exist but they are not
examined here,

In the case of w;=0, Eq. (2.2) is homogeneous and therefore w(z) =0, If it is considered that for low
values of wy, w(z) is small throughout the (0, z) .range, then according to (2.1) it should be assumed that
wt=—1:

wo=w, = 1/22% 5, = 1 Ty Re = 4%hed; a = 3 20,
Hence, according to (1.7) a Poiseuille parabola is obtained:
wo== 3200 — i,
with the coefficients a and ¢ being governed by the relation
a=13 Re. ¢ = a* = 3/Re.
In the other limiting case when wy=1, wy=1; wy=—2;
D= oep Fluw) = 23(0 — w)*2 -+ w);
w o= —(l — )} 232+ w); w(V) = L.

The latter equation has a trivial solution w =1 which cannot be used to derive asolutionto the original boundary-
value problem, It is therefore assumed that wy=1—¢, where & «1,

It can be seen that F(0) =4/3(1-1/2e2~1/2¢%. Consequently, correct within e-linear terms,
Flry = 2300 — @)¥2 - w).

By inserting this expression into (2.2) and integrating when w(0)=1-¢, we obtain

51 2—ul—3 T—1
Ty T e 1 T—0%

]’:

n

T
l
If it assumed that w=0, then retaining the terms of the order of ¢

s (17 DV In (12400

Further, it can be found that

iy

\il'd::-. | swds \ ___.::0—( (i,
¢ U [}

Taking this result into account, according to (1.13),

From the last formula it is clear that low ¢ correspond to high Re values, The asymptotic ¢ (Re) rela~
tionship takes the form

e e= 0697 oxp (—] 2 Hel,

Using this correlation it can be established that
ax1; 3 1 Rer wis) >~ —21 3, e~ 2§ 3 Re.

It can be concluded from these results that in the area near the walls given high Reynolds numbers the solu-
tion found is of the nature of a laminar boundary layer and the velocity at the core of the flow is virtually con-
stant. This rearrangement of the profile compared with the isothermic case takes place at a constant cross-
sectional temperature and is due solely to the axial acceleration of the flow which generates a significant in-
crease in the frictional reSIStance compared with the Poiseuille flow, for which ¢ =3/Re, as well as an in-
crease in the total drag o?

In general, the solution to Eq. (2.2) is expressed as an elliptical integral:
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Thus, w(z) can be written as an elliptical function, It is, however, easier to solve this problem numerically
for different w;,. The results of such calculations are shown in Fig. 1 for Re <0 and in Fig. 2 for Re >0,

In the case of low Reynolds numbers the problem can be solved for any values of o,
The solution to Egs. (1.4) and (1,5) is derived in the form of an expansion:
w=1u Re + u, Re*+...; 6 =14 0; Re + 0, Re* +....
For the leading coefficients of the expansion a set of equations is derived:
) = — xa%; 8y = 0; 05 = ouy,
for which the following boundary conditions are iméosed:

11 (0) = uy (1) = 0{(0) = 0;(1) = 8;(0) = 6, (1) = 0.
The solution takes the form

uy = (yai2){{ — y%); 08, = 0; 0, = (0ya*/24)(6y* — y* — 5‘).
Consequently,

8 = 1 -+ (oya¥24)Re? (6y* — y* — 5); 0, = 1 — (5/24)0ya? Re?.
By inserting these results into (1.14} we obtain
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Nu = 1.6. {2.8)

It can be shown that even when ¢ — 0 the asymptotic relationship (2.8) occurs,

The results of a numerical solution of the problem in the form of ¢c(Re) and Nu(Re) relationships are
shown in Fig. 2 by a dashed line for three values of the parameter ¢=0, 1, and 10, The most characteristic
property of the velocity profiles when ¢ > 0 is the lack of smoothness in the distribution of velocities through
the channel cross section for high Reynolds numbers [Fig. 3, in which for o=1 the w(y) relationships for dif-
ferent Re numbers are shown by solid lines and the temperature distribution 8(Re) by dotted lines]. The Rey-
nolds numbers Re =1, 10, 100, and 1,000 correspond to values of ¢ =2.05, 0,861, 0.361, and 0,148, The set of
w(y) profiles for Re =1,000 anddifferent Prandtlnumbers (0 <0< 1,000) areshownin Fig, 4, The profiles of the
mass velocity Py ~u/@ are smooth (Fig. 5, in which u/# profiles for ¢=0 and oc=1 are compared at Re = 1,000).

Thus, the unevenness in the density distribution through the channel cross section generates a reduction
in the volumetric velocity and an increase in the mass velocity in the area around the axis,

The author wishes to thank A, F. Seleznev for carrying out the calculations and V. N, Shtern for discuss~
ing the paper.
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DETERMINING THE RADIUS OF THE AIR VORTEX
DURING THE LAMINAR FLOW OF A LIQUID IN A
CENTRIFUGAL ATOMIZER

Yu. Z. Nekhamkin, B, D, Strelkov, UDC 532.517
and Yu. I. Khavkin

In existing theories of centrifugal atomizers, such as that of Abramovich [1], in order to deter-
mine the radius r, of the air vortex the conditions of the maximum rate of flow or some other
extremal principle are conventionally employed. In this paper the radius of the air vortex will
be determined from the equations of motion of a viscous incompressible liguid,

The atomizer under consideration is illustrated schematically in Fig. 1. Phenomena taking place in the
boundary layers close to the ends are not taken into account. The region of flow is divided into two zones.

All the quantities in this paper are dimensionless; lengths are given in terms of the radius of the outlet
nozzle ry, and velocities, in terms of the velocity in the inlet channels V,

In zone I(1 =r=g) the flow is quite flat, of the vortical sink type, ie., v=v(r), u=0, w=w(r), where v is
the radial velocity component, u is the axial component, and w is the circumferential component.

Equations for the velocity components in zone I were obtained in [2]:
U= —nr we= Cyrimeke TVC.I.'F‘

where w=f2nLry; Re = Vr,/v; f is the cross-sectional area of the inlet channels.
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